FSC-TPL-30-001 Application for a temporary derogation to use a ‘highly hazardous’ pesticide

A. General Requirements

| Application submission date | SCS Global Services
2000 Powell St., Suite 600 | Emeryville, CA 94608 USA
tel: 510.452.8049 | fax: (510) 452 6882
bgrady@scsglobalservices.com
www.SCSglobalservices.com |

<table>
<thead>
<tr>
<th>Name and contact details of certification body submitting the derogation:</th>
<th>Glufosinate Ammonium CAS No 77182-82-2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Active ingredient for which a temporary derogation is being requested:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Trade name and formulation type of the Pesticide:</th>
</tr>
</thead>
</table>

- Basta Non-Selective Herbicide SL
- Finale Non-Selective Herbicide LC
- Liberty Herbicide AC
- Liberty 150 Herbicide SL
- Ignite Herbicide AC
- Liberty 200 Herbicide SL
- Biffo Non-Selective Herbicide SL
- Liberty 280 Herbicide SL
- Imtrade Cease Herbicide AC
- Exile Herbicide SL
- Crop Culture Guillotine Herbicide SL
- 4farmers Glufosinate-Ammonium 200 Non-Selective Herbicide SL
- Aw Coltura 200 Herbicide SL
- Ac Capo 200 Herbicide SL
- Genfarm Glufosinate 200 Herbicide SL
- Agspray Glufosinate 200 Non-Selective Herbicide SL
- Titan Glufosinate 200 Herbicide SL
- Kenso Agcare Fiestar Non-Selective Herbicide SL
- Sky-7th 200 Herbicide SL
- Mission Glufosinate-Ammonium 200 Herbicide AC
- Rainbow Glufosinate 200 Herbicide SL
- Surefire* Gamma Herbicide SL
- Ozcrop Glufos Herbicide SL
- Apparent Glufosinate-Ammonium 200 Herbicide SL
- Easyfarm Glufosinate 200 Sl Herbicide SL
- Hallmark 200 Herbicide SL
- Yongnong Glufosinate Ammonium 200 Sl Herbicide SL
- Agro-Essence Glufosinate 200 Herbicide SL
- Fmc Glusta 200 Herbicide SL
- Ezycrop Glufosinate 200 Herbicide SL
- Novaguard Glufosinate 200 Sl Herbicide SL
- Exonerate Herbicide SL
<table>
<thead>
<tr>
<th>Trade name and formulation type of the Pesticide (continued):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Exonerate 200 Sl Herbicide SL</td>
</tr>
<tr>
<td>• Sinochem Notch 200sl Herbicide SL</td>
</tr>
<tr>
<td>• Accensi Glufosinate-Ammonium Herbicide SL</td>
</tr>
<tr>
<td>• Echem Glufosinate 200 Herbicide SL</td>
</tr>
<tr>
<td>• Farmalinx Commando 200 Herbicide SL</td>
</tr>
<tr>
<td>• Brazen Non-Selective Herbicide SL</td>
</tr>
<tr>
<td>• Fascinate 200 Sl Herbicide SL</td>
</tr>
<tr>
<td>• Conquest Faster Tg 200 Herbicide SL</td>
</tr>
<tr>
<td>• Forward Glufosinate 200 Sl Herbicide SL</td>
</tr>
<tr>
<td>• Kelpie G-Fos 200 Herbicide SL</td>
</tr>
<tr>
<td>• Macphersons Muster Herbicide SL</td>
</tr>
<tr>
<td>• Spalding Glufosinate 200 Herbicide SL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of application and the application equipment and intended quantities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground based boom, aerial boom, hand gun, Knapsack. at label rates 200 kg of a.i. per annum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common or Scientific name of the pest (or description of the problem/issue, as applicable):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Various annual, perennial and woody weeds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name and FSC certification codes of certificate holders(^1) requesting a temporary derogation. Please indicate scale category and whether it qualifies as a SLIMF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ Plantations Pty Ltd</td>
</tr>
<tr>
<td>Certification code: SCS-FM/COC- 00148P</td>
</tr>
<tr>
<td>License Code: FSC C107541 –</td>
</tr>
<tr>
<td>Large.</td>
</tr>
<tr>
<td>PF Olsen (Aus) Pty Ltd</td>
</tr>
<tr>
<td>Certificate Code: SCS-FM/COC-004290</td>
</tr>
<tr>
<td>License Code: FSC-C111011</td>
</tr>
<tr>
<td>Large.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scope for which a temporary derogation is being requested: (Please attach map is possible).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Australia, Victoria and Queensland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Forestry, species and expected forest area where use of the HHP is intended.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximately 1,000 hectares per annum of plantations of the following species groups:</td>
</tr>
<tr>
<td>Southern Pine (including Pinus elliottii var. elliottii (PEE), Pinus caribaea var. hondurensis (PCH), Pinus caribaea var. caribaea and PEE x PCH hybrids)</td>
</tr>
<tr>
<td>Firebreak maintenance in Western Australia</td>
</tr>
</tbody>
</table>

\(^1\) In the case of forest management enterprises applying for FSC certification, the FSC certificate holder code can be provided at a later stage, if and when the company achieves certification.
DEMONSTRATED NEED

a) Please describe briefly the silvicultural system (methods for site preparation, practices for harvesting, regeneration, time between rotations) in the MU(s) included in the scope of the requested derogation.

b) Please describe the Integrated Pest Management (IPM) system in place, including the plan to monitor the distribution and density of the targeted pest organisms in the MU(s).

c) Please indicate the thresholds above which, the damages caused by the targeted pest organisms are classified as severe and how they have been established.

d) Please indicate the population size of the targeted pest organism in the MU(s).

e) (Fill in only if you represent a large-scale MU)

Please indicate the conclusions of the comparative Cost/Benefit Analysis of using the requested pesticide versus other non-highly hazardous control alternatives.

The cost – benefit analysis shall include, at minimum, the following scenarios:

• no action vs. remedial control (short-term)
• no action vs. preventive practices (long-term)

f) (Fill in only if you represent a large-scale MU)

Please provide a review carried out by independent experts of the Cost/Benefit Analysis in e).

g) (Fill in only if you represent a medium or small-scale MU)

Please describe possible non HHP alternatives to the use of the requested HHP and explain why they are not considered feasible to control the targeted pest organisms.

h) Please include an estimate of the amount of area over which the pesticide is to be applied and how much of the pesticide is expected to be used annually.

i) (Fill in only if you are applying for the renewal of a derogation)

Please attach a report on the implementation of the IPM system during the previous derogation period, covering at minimum:

☐ Brief description of the silvicultural system in the MU(s) included in the scope of the requested derogation.

☐ A list of the monitored pest organisms.

☐ The results of the annual monitoring of the target species in relation to the defined thresholds.

☐ Quantitative data of the use of ‘highly hazardous’ pesticides per year for the full period of the existing derogation, areas of application and application method.

☐ A description of the programs that have been implemented to investigate, research, identify and test alternatives to the ‘highly hazardous’ pesticide, and the results.

Response

Control of annual, perennial and woody weeds is essential for the successful establishment and growth of plantations in Australia and New Zealand. Without weed control, crop trees may die due to inability to compete for water and nutrients, or growth rates may be so low that timber production becomes uneconomic. Effects can range from widespread mortality in new plantings to severe suppression of entire stands for indefinite periods, de-topping, butt and stem malformation, severe impedance to access and forest working or exacerbated fire hazard. The beneficial effects of weed control are well documented (e.g. (Knowe et al., 1985; Boosma and Hunter, 1990; Richardson, 1993; Smale, P. 2004; Woods et. al., 1992; Adams et al. 2003; George and Brennan, 2002). It has also been shown that good weed control can reduce the susceptibility and severity of insect (Michael and Zhong, 2004) and disease attacks on seedlings (Nambiar, 1990), thus, reducing or eliminating the need to apply pesticides to control such pests.

Glufosinate is considered a contact herbicide as there is limited translocation of the herbicide through
plants. This means that only those parts of the plant that are directly exposed to glufosinate are controlled by the product. When applied to eucalypts for example, the trees are defoliated but then recover and resprout from epicormic shoots. Pines on the other hand have a very limited capacity to resprout or reshoot from epicormics, which means that assuming good coverage is achieved, pines can be controlled. Ironically, in second and later rotations, wildlings of the crop species, also known as volunteers, can be one of the most severe weed problems. Where they are uncontrolled, they can result in very high stocking, in some cases as much as five or more crop species trees per square metre, or, 50,000 stems per hectare. This compares with normal operational stocking of generally between 900 to 1600 stems per hectare. The end result of very high stocking is that all the trees grow very slowly, are very skinny and never produce a viable crop tree, essentially leading to a failed rotation. While some may suggest that a non-commercial thinning could be carried out to take advantage of established crop species, this negates any improvement in the wood quality, growth, disease resistance and other traits of interest which may have been achieved since the previous rotation. Given that in pine species, rotations are generally 25-40 years, there is generally significant advancement in the genetics of tree species and it is therefore highly desirable to capture this. One of the benefits of glufosinate in this circumstance is that there is no residual effect and therefore, once applied, replanting can commence within days of spraying.

A growing problem nationally and internationally is glyphosate resistance. This has arisen due to a number of reasons, including natural background levels of resistance and also poor management in some agricultural systems. The switch from agriculture where intensive cultivation was used prior to sowing crops for both weed control and preparation for sowing to no-till farming systems has also meant that herbicide and in particular glyphosate is now relied on heavily. In Australia, herbicide resistance has become such a problem that there is now a dedicated effort through the Australian Herbicide Resistance Initiative which is hosted by the University of Western Australia and strongly supported by Grains Research and Development Corporation (http://ahri.uwa.edu.au/). This collaborative provides a range of tools to agricultural enterprises on innovative methods of controlling herbicide resistance with a strong focus on glyphosate. Some of the strategies employed to reduce the level of glyphosate resistance, particularly in annual ryegrass, requires access to cropping equipment to either strip seeds or windrow seeds. The principle area where forest managers are exposed to herbicide resistance is on firebreaks however, which means that any practice resulting in increased loads of fuel on firebreaks are not practical or desirable. Forest managers do at times use ploughing to reduce fuel loads on firebreaks however this is not a viable option on site with sandy soils and consequential high erosion risk. Slashing is also regarded as unacceptable by some regulatory authority who make it a condition of forest operations that fire breaks are kept “free of flammable material”.

The other means of reducing this problem is using a broader range herbicides and in particular, pre-emergent and post-emergent herbicides other than glyphosate. Of the herbicides available to forest managers, there are several that are capable of rapidly stopping a seeding event. These include glufosinate, paraquat, diquat and carfentrazone. Paraquat and diquat are considered by forest managers to be excessively toxic and present and unacceptable risk to applicators. Carfentrazone is not sufficiently efficacious to be useful. Glufosinate is the only herbicide that is considered economically, socially and environmentally acceptable to use in an integrated pest management regime in combination both with cultural methods and other herbicides to combat glyphosate resistance.

SPECIFIED CONTROLS TO PREVENT, MINIMISE AND MITIGATE HAZARDS.

a) Description of the nature of the controls that will be implemented for the use of the derogated pesticide to prevent, mitigate and minimize any deleterious effects on ecological, social and economic values within and beyond the management unit.

b) References to national laws/ regulations on safety measures should be made and any additional safety measures to supplement these laws/ regulations should be stated.

c) Optional: Description of any relevant site-specific conditions that might mitigate likely negative effects resulting from the derogated pesticide and/or description of mitigating properties specific to the formulation/ product used.

Response

In Australia the Australian Pesticides & Veterinary Medicines Authority (APVMA) is responsible for the registration and control of herbicides up to the point of retail sale. The registration process is governed by Commonwealth legislation and undertaken according to accepted scientific principles and through rigorous independent analysis by several government agencies and the APVMA. Before being
registered for sale, products must go through a risk assessment process and specifically meet the requirements of the Agvet Code 5a with regard to safety of the environment and humans:

(1) An active constituent or chemical product meets the safety criteria if use of the constituent or product, in accordance with any instructions approved, or to be approved, by the APVMA for the constituent or product or contained in an established standard:

(a) is not, or would not be, an undue hazard to the safety of people exposed to it during its handling or people using anything containing its residues; and

(b) is not, or would not be, likely to have an effect that is harmful to human beings; and

(c) is not, or would not be, likely to have an unintended effect that is harmful to animals, plants or things or to the environment.

(2) For the purposes of being satisfied as to whether an active constituent meets the safety criteria, the APVMA:

(a) must have regard to the following:

(i) the toxicity of the constituent and its residues, including metabolites and degradation products, in relation to relevant organisms and ecosystems, including human beings;

(ii) the method by which the constituent is, or is proposed to be, manufactured;

(iii) the extent to which the constituent will contain impurities;

(iv) whether an analysis of the chemical composition of the constituent has been carried out and, if so, the results of the analysis;

(v) any conditions to which its approval is, or would be, subject;

(vi) any relevant particulars that are, or would be, entered in the Record for the constituent;

(via) whether the constituent conforms, or would conform, to any standard made for the constituent under section 6E to the extent that the standard relates to matters covered by subsection (1);

(vii) any matters prescribed by the regulations; and

(b) may have regard to such other matters as it thinks relevant.

(3) For the purposes of being satisfied as to whether a chemical product meets the safety criteria, the APVMA:

(a) must have regard to the following:

(i) the toxicity of the product and its residues, including metabolites and degradation products, in relation to relevant organisms and ecosystems, including human beings;

(ii) the relevant poison classification of the product under the law in force in this jurisdiction;

(iii) how the product is formulated;

(iv) the composition and form of the constituents of the product;
(v) any conditions to which its registration is, or would be, subject;

(vi) any relevant particulars that are, or would be, entered in the Register for the product;

(via) whether the product conforms, or would conform, to any standard made for the product under section 6E to the extent that the standard relates to matters covered by subsection (1);

(vii) any matters prescribed by the regulations; and

(b) may have regard to one or more of the following:

(i) the acceptable daily intake of each constituent contained in the product;

(ii) any dietary exposure assessment prepared under subsection 82(4) of the Food Standards Australia New Zealand Act 1991 as a result of any proposed variation notified under subsection 82(3) of that Act in relation to the product, and any comments on the assessment given to the APVMA under subsection 82(4) of that Act;

(iii) whether any trials or laboratory experiments have been carried out to determine the residues of the product and, if so, the results of those trials or experiments and whether those results show that the residues of the product will not be greater than limits that the APVMA has approved or approves;

(iv) the stability of the product;

(v) the specifications for containers for the product;

(vi) such other matters as it thinks relevant.

APVMA take a risk management approach to product registration which includes the imposition of conditions on product approvals or registrations. These conditions of use are legally enforceable strategies to reduce risk. Further, the Agvet Code regulations allow APVMA to restrict the use of certain chemicals that have a high risk profile so that only persons with additional training, licensing and compliance steps may purchase or use a pesticide. These conditions include detailed label instructions for safe use and associated Material Safety Data Sheets (MSDS) for the safe handling and application of pesticides. Label/MSDS instructions include details for mixing, treatment rates, protection of wildlife, protection of non-target plants, storage, disposal, operator safety and first-aid.

Registrants must provide the APVMA with information about the product to allow independent evaluators to decide whether it is effective and safe for people, animals and the environment, and not a trade risk. The APVMA notifies the public of the results of the evaluation and invites public comment on the registration proposal before making its decision. It also invites members of the public to participate in its programs such as reporting adverse chemical experiences through the Adverse Experience Reporting Program (AERP) and contributing to chemical reviews.

State and Territory Governments are responsible for controlling the use of pesticides beyond the point of retail sale. Each state or Territory has a regulatory body or bodies responsible for pesticide use, for example in Victoria it is the Department of Environment, Land, Water and Planning, and in Western Australia, the Department of Agriculture and Food and, WA Health. All have similar legislation and codes of practice to ensure safe and effective application of registered chemicals.

For the states concerning the National Derogation applications, the relevant regulations are:
Queensland - Agricultural Chemicals Distribution Control Act 1966

Victoria - Version No. 004 Agricultural and Veterinary Chemicals (Control of Use) Regulations 1996
S.R. No. 71/1996 Version incorporating amendments as at 6 May 2003

Western Australia – Health (Pesticides) Regulation 2011
(http://www5.austlii.edu.au/au/legis/wa/consol_reg/hr2011277/)

Each of these acts or regulations interacts with other acts, for example, in South Australia:

- Controlled Substances Act 1984
- Controlled Substances (Poisons) Regulations 1996
- Controlled Substances (Pesticides) Regulations 2003
- Dangerous Substances Act 1979 and Regulations 2002
- Work Health and Safety Act 2012 and Regulations 2012
- Environment Protection Act 1993

While these differ from state to state, since 2008, each state and Territory has agreed to a common framework for the control of use of agricultural and veterinary chemicals. As a result, the control of use is now becoming increasingly consistent across States and Territory’s (COAG, 2008).

The end result for each state is that pesticides are:
- transported and stored safely
- used only by persons that are appropriately trained and where deemed necessary, licensed
- used in a way that ensures the safety of applicators and the public
- used in a way that ensures the safety of the environment
- used in an accountable manner through detailed recording of all application areas, pesticide application details and environmental conditions at the time of application

Like the APVMA, states and territories take a risk management approach to pesticides and frequently there are limitations on which states or territories pesticides may be used and how they may be used in those states. For example, Basta (one of the most common products containing glufosinate) for given use situations has nominated states in which that use may occur.

Forestry Application

All certified companies have well documented policies and operational procedures, best practice manuals or similar for the use and handling of chemicals that are in alignment with State and Federal Government requirements. These include Integrated Pest Management Strategies, detailed Site operation plans and Site Specific Silviculture plans.

Staff are trained to a high level and only qualified staff or contractors, are used to carry out spraying operations. All label and MSDS instructions are adhered to. Site-specific spray plans are developed that address any known neighbour and environmental sensitivities. Spray plans include details of untreated buffer zones, which are used to protect sensitive areas within, or adjacent to, the plantation. Weather conditions are carefully monitored throughout each operation. Operations will be postponed, or cancelled where weather conditions are not suitable. Follow-up monitoring of the impacts of the
operation on the weed populations and the crop where relevant is carried out.

Glufosinate specific controls
Glufosinate is listed by FSC as a developmental and reproductive toxin. Given this identified risk the principle risk controls that are critical for the pesticide are exposure to humans. This exposure can occur through exposure to the applicator or via spray drift from application operations. The risk of exposure is generally dealt with by using appropriate personal protective equipment when handling and mixing the concentrate. Elbow length gloves are a standard and are specified on the relevant Material Safety Data Sheets. In addition, full cotton overalls are required and a hat and either goggles or preferably, a face shield. For glufosinate given its high risk, a respirator approved to the AS/NZS 1715/1716 standard is also necessary. For boom application, industry best practice dictates that operators are safely positioned in sealed vehicle cabins with an appropriate chemical filter to eliminate any possible intrusion of that environment.

In addition to the downwind buffers already in place, forest managers are participating in industry wide research project to examine the real spray drift risks based on actual spray set ups and application scenarios which will further refine downwind spray buffers and lead to an improvement in confidence of the buffers used. This project is supported by the APIPRC (Australian Plantation Industry Pesticide Research Consortium) which is jointly funded by Industry and the FWPA (Forest & Wood Products Association). The research project uses actual spray set ups and application scenarios to derive the droplet size distribution generated by a spray operation. This droplet size distribution can then be used in the validated model, Agdisp, to determine at what downwind distance the level of chemical no longer poses risk. This process has now been recognised by the APVMA and will in future contribute to the conditions on registered labels. While Agdisp is not currently capable of accounting for interception of drift by tree canopies (this will lead to forest managers over estimating the buffer required ensuring there is no risk of exposure), the NWPPA (National Working Party on Pesticide Application) is working with the APVMA to examine this area.

PROGRAM TO IDENTIFY ALTERNATIVES TO A ‘HIGHLY HAZARDOUS’ PESTICIDE INCLUDING PREVENTATIVE SILVICULTURAL MEASURES.

a) *(Fill in only if you represent a large-scale MU)*
Please describe the research program (individually or in collaboration with other research agencies/institutions or commercial enterprises) and/or field trials of alternative non-chemical or less hazardous methods of pest management that have been planned for the requested derogation period, including devoted resources and expected timelines.

b) *(Fill in only if you represent a medium-scale MU)*
Please describe how you will support and/or be involved in a research program from research agencies/institutions (e.g. universities) or commercial enterprises in the requested derogation period, including devoted resources and expected timelines.

c) *(Fill in only if you represent a small-scale MU)*
Please describe the program to exchange information related to pesticides use with other forest managers, to contact research institutions and/or search in alternative databases, that will be implemented in the requested derogation period.

d) *(Fill in only if you are applying for the renewal of a derogation)*
Please describe the programs that have been implemented to investigate, research, identify and test alternatives to the requested ‘highly hazardous’ pesticide, and the results.
Describe the programs that are in place to identify alternatives, including a timetable as well as research partners and targets:
Response

Regrettably the successful model of CRC’s (cooperative research centre’s) for various research topics, such as forestry or weed control, has been largely abandoned by the Australian federal government. The CRC’s saw the best minds from industry, universities, CSIRO and international experts collaborate to provide some remarkable research outcomes. As a result of their demise, research into weed control is now spread across a large number of organisations such as state government agencies, for example, PIRSA in South Australia), Research and Development Corporation (eg, Grains Research and Development Corporation) and other interest groups. The principal model for research into weed control currently in plantation forestry is the APIPRC (Australian Plantation Industry Pesticide Research Consortium). This consortium is funded by forest managers direct cash input and in-kind contributions for which the cash component is matched by FWPA (Forest and Wood Products Association), whose funds are sourced from an industry level on sales. The APIPRC was formed in 2010 to replace the work of Dr. Barry Tomkins who had previously coordinated and conducted research principally into establishment weed control. The scope of the APIPRC was broadened to include pesticides more generally. The APIPRC has an annual budget of up to $200,000 annually for the past 5 years and has conducted a range of trials each year in Australia testing various herbicides and combinations, including herbicides made available by chemical manufacturers. Despite these substantive efforts, no commercially viable non-herbicide based management options have yet been identified that could replace the judicious use of Glufosinate.

The APIPRC is well placed to develop new methodologies and pesticides for weed control, including potential replacements for glufosinate. The membership of the consortium includes forest managers from across Australia, including several state based forest managers with direct access to innovations and developments from other state government entities. The membership also includes arguably the pesticide suppliers most active in research into new pesticides and in particular, innovations that reduce drift and exposure. The consortium also tenders out its research project to a broad base of research suppliers further extending the reach and knowledge base of the group.

In respect to addressing glyphosate resistance, the Australian Herbicide Resistance Initiative is far better placed and resourced to provide new and innovative non-pesticide based methods of control and also provide management strategies to use alternative pesticides to management herbicide resistance.

STAKEHOLDER CONSULTATION

a) Description of the nature of the information provided and consultation undertaken with potentially affected groups and local communities (e.g. neighbors on directly adjoining land) who use managed forests for various purposes (as a source of groundwater, for hunting, fishing or gathering medicinal or edible plants) and those stakeholders with the more general interest regarding the use of pesticides.
b) Description of the consultation mechanism (i.e. public notices in local newspapers or on local radio stations, letters sent to potentially affected persons, meetings, field observations etc.) used to inform, consult and receive significant feedback from the majority of the potentially affected persons.
c) Evidence of balanced stakeholder consultation with:
 □ Potentially (directly or indirectly) affected persons or groups of individuals
 □ Local/regional environmental organizations (non-governmental organizations)
 □ Local/regional government (environmental authorities)
 □ Representatives of the local community (e.g. contacted at community meetings)
 □ Representatives of the forest industry
d) A summary of the comments received and any responses presented for each stakeholders category. Explanations should be given of how stakeholder concerns were addressed. Where necessary, the original stakeholder comments may be requested.

Response